Yuda Saydun

Recent Posts

Artificial Intelligence and ICS Cybersecurity: Filling Gaps in Operational Technology Security

Posted by Yuda Saydun on Jun 18, 2018

ramon-salinero-271002-unsplash-1080x720Recent headlines have been abuzz with ICS experts warning of grid vulnerability to hacking. Digital threat actors have become exceptionally skilled at infiltrating every type of computer network. Industrial Control Systems (ICS) are no different: While ICS networks were generally thought to be more secure due to not communicating outside of the corporate network or on the internet, attackers have managed to compromise them and steal valuable production data.

Some of the most effective tools for ICS cybersecurity are the emerging technologies in Machine Learning and Artificial Intelligence. By combining real-time data monitoring with orchestration and automated response, AI/ML solutions are proving their value when compared to legacy systems and human-intervention driven response times.

A Real-World Example of Using AI for ICS Network Security

At the last Black Hat Europe conference, security research firm CyberX demonstrated how data exfiltration was possible from a supposedly air-gapped ICS network. By delivering a payload of specific ladder logic code into Programmable Logic Controllers, the attack was programmed to send out copies of data through encoded radio signals which can be received by AM radios and analyzed by special-purpose software. As the communication channel is outside the TCP/IP stack, there is no encryption to safeguard the data once it’s captured.

How does AI respond to this threat? In this case, Machine Learning can be used to craft an algorithm which establishes a “normal” state and monitors traffic and configurations to compare against that state. This baseline can include network traffic, equipment settings, and even the source code of PLCs. With its continuous heartbeat checks, the algorithm can detect when the system deviates from the baseline and immediately alert security staff of the change.

Another real-world example involving operational technology security comes very recently from the ransomware attack on Atlanta’s municipal infrastructure, which involved encrypting city files, locking access to online services, and blocking the city from processing court cases and warrants. This is just the latest in a string of attacks on American cities. Previously, hackers gained access to Dallas’s tornado warning system and set off sirens in the middle of the night. In the case of Atlanta, an AI cybersecurity layer would have been able to spot irregularities in system access and lockdown channels before the hackers could manipulate the permissions.

AI and ICS Cybersecurity: Adding Value to Existing Systems

Where does AI fit into your existing ICS network security program? You already have the ICS equipment sectioned off on its own VLAN(s), firewalled, monitored, and protected by IDS/IPS, SIEMs, and other security tools. Where does it make sense to insert AI/ML into the equation?

The biggest advantage of implanting an AI solution for ICS cybersecurity is its real-time response and orchestration. AI tools don’t need to wait for security staff to make a decision. They don’t see a black and white picture of firewall rules which often miss malware traffic flying under the radar, masquerading as “normal” network signals. Machine algorithms can detect abnormal data exchanges and immediately respond to the threat, long before a SOC resource would be alerted. Some AI offerings can even monitor devices that don’t communicate over TCP/IP, creating powerful visibility into non-networked equipment.

A particularly interesting tool to protect industrial control systems is Cyberbit’s ScadaShield, a layered solution to provide full stack ICS networkdetection, visibility, smart analytics, forensics and response. ScadaShield performs continuous monitoring and detection across the entire attack surface for both IT and OT components and can be combined with SOC automation to trigger workflows that accelerate root cause identification and mitigation.

Large-scale processes operating at critical power generation, electrical transmission, water treatment, and refining sites, as well as major manufacturing plants are more at risk than ever.  The good news is that new developments in Artificial Intelligence and Machine Learning have created new ways to protect these systems and improve ICS cybersecurity.

If you haven’t already done so, this is a good time to consider adding an AI/ML solution to your security perimeter to take your prevention and response times to the next level. Click here to get in touch with our team today.

PHOTO CREDIT: UNSPLASH | RAMÓN SALINERO

The Role of Artificial Intelligence in Cyber Security: Separating Fact from Fiction

Posted by Yuda Saydun on Jun 4, 2018

adrien-milcent-192445-unsplash-1080x720Machine learning and artificial intelligence have exploded onto the cybersecurity scene over the last year. Software vendors and MSSPs are scrambling to bring their particular flavor of AI cyber security to market and claim their stake as industry leaders.

While AI has quickly become table stakes for an effective security posture, some of it can also seem to be overhyped in some respects. In this post, we’ll aim to cut through the superlatives and provide a few thoughts on the role of artificial intelligence in cyber security.

Artificial Intelligence in Cyber Security Does Not Replace Traditional Tools

By claiming that AI will replace traditional tools while lowering labor costs and probably making coffee at the same time, some advertising has put AI on a pedestal that it may not have achieved yet.

Here are some things that AI cyber security definitely will not replace. Security teams will still need to keep around:

  • Employee training and a security-sensitive culture
  • Smart policies and processes
  • Qualified architects, managers, engineers, and analysts
  • Rock-solid, layered infrastructure with effective controls around it

If you find yourself saying, “Wait, that’s 95% of my security program,” you’re right. Artificial intelligence in cyber security is a complement to a well-run cyber framework, not a replacement for it.

Must-Ask Questions When Evaluating AI Cyber Security Tools

We all have seen that technology can be promoted with grand promises backed by sometimes disappointing results. To avoid a dud in your AI implementation, you may want to sit down with your security team and your vendor rep to go over a few questions:

  • How do your AI algorithms actually work? How mature is the technology? What are its blind spots?
  • How well does it avoid false positives and false negatives?
  • How do you measure the incremental benefits and the expected ROI?
  • What outside support are we going to need to implement and maintain this?
  • How much additional training will we need to use this effectively?
  • Does it produce usable reports that actually mean something?
  • What results have your other clients seen from it?
  • Does it outperform what I already have, or will it be just another software bloating up my network?

Pitfalls to Avoid When Implementing an AI Cyber Security Solution

Adding software to your organization’s toolkit is rarely a trivial matter, and even less so when you’re dealing with AI. Here are some potential mistakes when deploying an AI cyber security tool:

  • Expecting a “set-and-forget” solution that will replace the whole security program: See the first section of this post.
  • Thinking that an in-house developed solution will be best-in-show without exploring other available options.
  • Expecting that the AI tool won’t require any customization or integration.
  • And possibly the most delicate one: Thinking it’ll all work out on automatic pilot without specialized AI expertise on your team or assistance from AI safety experts.

The fact of the matter is that it is no longer viable to delay implementation of robust AI cyber security tools. Bad actors have already started using AI.

A talented cybersecurity team and company-wide awareness trainings go a long way. Artificial intelligence in cyber security simply brings a needed support structure that can assist your teams to prevent attacks and accelerate mitigation if needed. As businesses undergo the digital transformation, it is imperative they also leverage new developments in cyber capabilities.

CyVent is a Certified Partner of Darktrace, a global leader in machine learning applied to cybersecurity, whose technology can detect and autonomously respond to cyber threats that legacy systems miss. Learn more about Darktrace’s capabilities in this white paper.

 

A New Digital Defense: Machine Learning and Cybersecurity

Posted by Yuda Saydun on May 28, 2018

Updated on May 7, 2019

It’s no surprise to anyone that digital threats are evolving and becoming more complex than ever before. As attackers take their game to the next level, an organization’s cybersecurity program should grow and become smarter along with them. The latest step forward in digital defense comes in the form of machine learning and Artificial Intelligence algorithms that combine the reliability of traditional signatures with the power of Big Data analytics.

Legacy Tools No Longer the Answer to Growing Threats

With the ever-increasing sophistication of today’s security threats, traditional layers of defense like SIEMs, IDS/IPS, and antimalware applications are no longer sufficient. While these tools are certainly effective at thwarting routine port scans or spam emails, the smart security administrator needs to add another layer of security to be truly protected from advanced attacks. Signature-based defenses can’t scale fast enough or stay up to date with critical threats like zero-day attacks or a targeted phishing campaign, and reactive security programs are an open invitation for a data breach. While a business can add more resources to its SOC, or invest in the most engaging security awareness program, an organization’s defense is only as strong as the tools used in that defense. The reality is that security programs built on tools from as recent as 3-4 years ago are already outdated in the face of today’s threats.

Combining Traditional Defenses With Modern Data Analytics

 What is the answer to the increasing complexity of these attacks? By pairing the usefulness of legacy solutions with a boost from Big Data, machine learning allows administrators to identify and prevent new or anomalous threats while controlling attacks from traditional threat vectors. Beginning with a baseline of signature files and a sample of normal activity from the network, new security devices can implement machine learning to automatically detect and shut down advanced threats that would otherwise slip past legacy perimeters.

An important component of these AI-driven devices is the ability to aggregate and analyze data from all the environments they are installed in, across multiple customers and industries. For clients who choose to opt-in to the program, smart devices can share their anonymized data in a pool of information from other clients, greatly increasing the samples that algorithms can be based upon. By analyzing data from such a large pool, these devices can leverage predictive analysis to protect an organization from threats that are new to their market but have been seen before in other industries.

In summary, security professionals should be aware that traditional lines of defense are no longer sufficient against today’s evolving threats. Machine intelligence and Big Data are changing the cybersecurity game by combining legacy methods with modern analysis and behavior models and should be seriously considered while building a well-rounded security program. Click here to learn more about machine learning in cyber security.

PHOTO CREDIT: UNSPLASH | JASH CHHABRIA

Machine Learning as a New Line of Cybersecurity Defense

Posted by Yuda Saydun on May 28, 2018

jash-chhabria-658499-unsplash-1080x718It’s no surprise to anyone that digital threats are evolving and becoming more complex than ever before. As attackers take their game to the next level, an organization’s cybersecurity program should grow and become smarter along with them. The latest step forward in digital defense comes in the form of machine learning and Artificial Intelligence algorithms that combine the reliability of traditional signatures with the power of Big Data analytics.

Legacy Tools No Longer the Answer to Growing Threats

With the ever-increasing sophistication of today’s security threats, traditional layers of defense like SIEMs, IDS/IPS, and antimalware applications are no longer sufficient. While these tools are certainly effective at thwarting routine port scans or spam emails, the smart security administrator needs to add another layer of security to be truly protected from advanced attacks. Signature-based defenses can’t scale fast enough or stay up to date with critical threats like zero-day attacks or a targeted phishing campaign, and reactive security programs are an open invitation for a data breach. While a business can add more resources to its SOC, or invest in the most engaging security awareness program, an organization’s defense is only as strong as the tools used in that defense. The reality is that security programs built on tools from as recent as 3-4 years ago are already outdated in the face of today’s threats.

Combining Traditional Defenses With Modern Data Analytics

 What is the answer to the increasing complexity of these attacks? By pairing the usefulness of legacy solutions with a boost from Big Data, machine learning allows administrators to identify and prevent new or anomalous threats while controlling attacks from traditional threat vectors. Beginning with a baseline of signature files and a sample of normal activity from the network, new security devices can implement machine learning to automatically detect and shut down advanced threats that would otherwise slip past legacy perimeters.

An important component of these AI-driven devices is the ability to aggregate and analyze data from all the environments they are installed in, across multiple customers and industries. For clients who choose to opt-in to the program, smart devices can share their anonymized data in a pool of information from other clients, greatly increasing the samples that algorithms can be based upon. By analyzing data from such a large pool, these devices can leverage predictive analysis to protect an organization from threats that are new to their market but have been seen before in other industries.

In summary, security professionals should be aware that traditional lines of defense are no longer sufficient against today’s evolving threats. Machine intelligence and Big Data are changing the cybersecurity game by combining legacy methods with modern analysis and behavior models and should be seriously considered while building a well-rounded security program.

If you would like to learn more about machine learning in cybersecurity, click here to download "The Enterprise Immune System: Proven Mathematics and Machine Learning for Cyber Defense"...

PHOTO CREDIT: UNSPLASH | JASH CHHABRIA

The Importance of a Cybersecurity Program Built on Strategy

Posted by Yuda Saydun on May 14, 2018

Updated on May 7, 2019

Every other day, we hear disclosures about some new security breach that leads to damaged reputations, executive resignations and plummeting stock values. While It is tempting to become a wee-bit sarcastic and ‘normalize’ this state of affairs, the danger of cyber attacks can’t be understated. The gap between time to exfiltration vs time to quarantine is growing in favor of attackers. Thought leaders and Trillion-Dollar loss projections reinforce that information warfare is a serious threat that’s quickly becoming the #1 danger for businesses, governments and even individual liberties.

What is the Role of Cybersecurity?

Throw in a dizzying array of new technologies and new vendors, and it‘s no wonder cyber security executives, CFOs and CEO’s feel growing levels of pressure.  What we all need at this time is a change in attitude: The role of cyber security is to enable the business to reach its goals, not to be the goal in and of itself. No business exists for the sake of having an unbreachable security program, if such a thing can even be built. On the contrary, a good security program drives and supports the organization to reach its strategic goals.

In this non-stop ‘spy vs. spy’ game between good guys and bad actors, the solution is not to keep adding one shiny tool after another but rather focusing on a well-thought out strategy that includes multiple prongs: (a) Periodic audits, strong fundamentals, clear policies and well-trained team members  (b) adding advanced tools to automate, orchestrate and streamline processes while reducing costs, and (c) including cyber security within the C-level risk management view that balances acceptable exposure levels, qualifies the required investments and takes advantage of available risk transfer options.

What is the role of a trusted Cyber Security Solutions Provider?

Within this quickly changing environment, a trusted partner’s role is to help the clients reduce anxiety, become better risks and increase peace of mind.

A trustworthy partner will sit down and fully understand your needs before talking about any kind of product lineup. If you have security questions, contact us and let’s make a plan that works for you.

PHOTO CREDIT: UNSPLASH | TASKIN ASHIQ

The Importance of a Cyber Security Program Built on Strategy, Not Fear

Posted by Yuda Saydun on May 14, 2018

taskin-ashiq-464194-unsplash-1080x609Every other day, we hear disclosures about some new security breach that leads to damaged reputations, executive resignations and plummeting stock values. While It is tempting to become a wee-bit sarcastic and ‘normalize’ this state of affairs, the danger of cyber attacks can’t be understated. The gap between time to exfiltration vs time to quarantine is growing in favor of attackers. Thought leaders and Trillion-Dollar loss projections reinforce that information warfare is a serious threat that’s quickly becoming the #1 danger for businesses, governments and even individual liberties.

What is the Role of Cybersecurity?

Throw in a dizzying array of new technologies and new vendors, and it‘s no wonder cyber security executives, CFOs and CEO’s feel growing levels of pressure.  What we all need at this time is a change in attitude: The role of cyber security is to enable the business to reach its goals, not to be the goal in and of itself. No business exists for the sake of having an unbreachable security program, if such a thing can even be built. On the contrary, a good security program drives and supports the organization to reach its strategic goals.

In this non-stop ‘spy vs. spy’ game between good guys and bad actors, the solution is not to keep adding one shiny tool after another but rather focusing on a well-thought out strategy that includes multiple prongs: (a) Periodic audits, strong fundamentals, clear policies and well-trained team members  (b) adding advanced tools to automate, orchestrate and streamline processes while reducing costs, and (c) including cyber security within the C-level risk management view that balances acceptable exposure levels, qualifies the required investments and takes advantage of available risk transfer options.

What is the role of a trusted Cyber Security Solutions Provider?

Within this quickly changing environment, a trusted partner’s role is to help the clients reduce anxiety, become better risks and increase peace of mind.

A trustworthy partner will sit down and fully understand your needs before talking about any kind of product lineup. If you have security questions, contact us and let’s make a plan that works for you.

PHOTO CREDIT: UNSPLASH | TASKIN ASHIQ